Abstract

Distributional equation is an important tool in the characterization theory because many characteristic properties of distributions can be transferred to such equations. Using a novel and natural approach, we retreat a remarkable distributional equation whose corresponding functional equation in terms of Laplace–Stieltjes transform is of the Poincaré type. The necessary and sufficient conditions for the equation to have a unique distributional solution with finite variance are provided. This complements the previous results which involve at most the mean of the distributional solution. Besides, more general distributional (or functional) equations are investigated as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.