Abstract
The quantum approximate optimization algorithm (QAOA) is a promising method for solving certain classical combinatorial optimization problems on near-term quantum devices. When employing the QAOA to 3-SAT and Max-3-SAT problems, the quantum cost exhibits an easy-hard-easy or easy-hard pattern respectively as the clause density is changed. The quantum resources needed in the hard-region problems are out of reach for current NISQ devices. We show by numerical simulations with up to 14 variables and analytical arguments that the adaptive-bias QAOA (ab-QAOA) greatly improves performance in the hard region of the 3-SAT problems and hard region of the Max-3-SAT problems. For similar accuracy, on average, ab-QAOA needs 3 levels for 10-variable 3-SAT problems as compared to 22 for QAOA. For 10-variable Max-3-SAT problems, the numbers are 7 levels and 62 levels. The improvement comes from a more targeted and more limited generation of entanglement during the evolution. We demonstrate that classical optimization is not strictly necessary in the ab-QAOA since local fields are used to guide the evolution. This leads us to propose an optimization-free ab-QAOA that can solve the hard-region 3-SAT and Max-3-SAT problems effectively with significantly fewer quantum gates as compared to the original ab-QAOA. Our work paves the way for realizing quantum advantages for optimization problems on NISQ devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.