Abstract

Combinatorial optimization problems are ubiquitous and computationally hard to solve in general. Quantum approximate optimization algorithm (QAOA), one of the most representative quantum-classical hybrid algorithms, is designed to solve combinatorial optimization problems by transforming the discrete optimization problem into a classical optimization problem over continuous circuit parameters. QAOA objective landscape is notorious for pervasive local minima, and its viability significantly relies on the efficacy of the classical optimizer. In this work, we design double adaptive-region Bayesian optimization (DARBO) for QAOA. Our numerical results demonstrate that the algorithm greatly outperforms conventional optimizers in terms of speed, accuracy, and stability. We also address the issues of measurement efficiency and the suppression of quantum noise by conducting the full optimization loop on a superconducting quantum processor as a proof of concept. This work helps to unlock the full power of QAOA and paves the way toward achieving quantum advantage in practical classical tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.