Abstract

Compartmental models of biological or physical systems are often described by a system of “stiff” differential equations. In this paper an algorithm for solving a system with linear coefficients is presented that employs numerical inversion of the Laplace transform of the model equations. The inversion algorithm and Gear's backward differentiation method are compared for two stiff test problems and a differential system governing a 27-compartment model of bile acid transport and metabolism. The inversion algorithm is reliable, requires modest computation time on a desktop computer and provides better accuracy than Gear's method, especially for the extremely stiff example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.