Abstract

BackgroundDynamic models in Systems Biology are used in computational simulation experiments for addressing biological questions. The complexity of the modelled biological systems and the growing number and size of the models calls for computer support for modelling and simulation in Systems Biology. This computer support has to be based on formal representations of relevant knowledge fragments.ResultsIn this paper we describe different functional aspects of dynamic models. This description is conceptually embedded in our "meaning facets" framework which systematises the interpretation of dynamic models in structural, functional and behavioural facets. Here we focus on how function links the structure and the behaviour of a model. Models play a specific role (teleological function) in the scientific process of finding explanations for dynamic phenomena. In order to fulfil this role a model has to be used in simulation experiments (pragmatical function). A simulation experiment always refers to a specific situation and a state of the model and the modelled system (conditional function). We claim that the function of dynamic models refers to both the simulation experiment executed by software (intrinsic function) and the biological experiment which produces the phenomena under investigation (extrinsic function). We use the presented conceptual framework for the function of dynamic models to review formal accounts for functional aspects of models in Systems Biology, such as checklists, ontologies, and formal languages. Furthermore, we identify missing formal accounts for some of the functional aspects. In order to fill one of these gaps we propose an ontology for the teleological function of models.ConclusionWe have thoroughly analysed the role and use of models in Systems Biology. The resulting conceptual framework for the function of models is an important first step towards a comprehensive formal representation of the functional knowledge involved in the modelling and simulation process. Any progress in this area will in turn improve computer-supported modelling and simulation in Systems Biology.

Highlights

  • Dynamic models in Systems Biology are used in computational simulation experiments for addressing biological questions

  • New high-throughput experimentation generates enormous amounts of data which forms the empirical basis for dynamic models in Systems Biology

  • The aim of this review is to investigate the coverage of formal representations of functional knowledge as a basis for computer support

Read more

Summary

Introduction

Dynamic models in Systems Biology are used in computational simulation experiments for addressing biological questions. The complexity of the modelled biological systems and the growing number and size of the models calls for computer support for modelling and simulation in Systems Biology. This computer support has to be based on formal representations of relevant knowledge fragments. Computer support for modelling and simulation is an important contribution to meet the challenges in Systems Biology. In the context of this work the use of the traditional terms seems to be misleading because the omnipresent term “model” is used with different meaning

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.