Abstract
In this paper, a new hybrid scheme based on learning algorithm of fuzzy neural network (FNN) is offered in order to extract the approximate solution of fully fuzzy dual polynomials (FFDPs). Our FNN in this paper is a five-layer feed-back FNN with the identity activation function. The input-output relation of each unit is defined by the extension principle of Zadeh. The output from this neural network, which is also a fuzzy number, is numerically compared with the target output. The comparison of the feed-back FNN method with the feed-forward FNN method shows that the less error is observed in the feed-back FNN method. An example based on applications are given to illustrate the concepts, which are discussed in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.