Abstract
A previous study demonstrated that the incorporation of bioactive glass (BG) into poly (lactic-co-glycolic acid) (PLGA) can promote the osteoblastic differentiation of marrow stromal cells (MSC) on PLGA by forming a calcium phosphate rich layer on its surface. To further understand the mechanisms underlying the osteogenic effect of PLGA-BG composite scaffolds, we tested whether solution-mediated factors derived from composite scaffolds/hybrids can promote osteogenesis of marrow stromal cells. The dissolution product from PLGA-30%BG scaffold stimulated osteogenesis of MSC, as was confirmed by increased mRNA expression of osteoblastic markers such as osteocalcin (OCN), alkaline phosphatase (ALP), and bone sialoprotein (BSP). The three-dimensional structure of the scaffolds may contribute to the production of cell derived factors which promoted distant MSC differentiation. Thus PLGA-BG composites demonstrates significant potential as a bone replacement material.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have