Abstract

AbstractInorganic nanowire arrays hold great promise for next‐generation energy storage and conversion devices. Understanding the growth mechanism of nanowire arrays is of considerable interest for expanding the range of applications. Herein, we report the solution‐liquid‐solid (SLS) synthesis of hexagonal nickel selenide nanowires by using a nonmetal molecular crystal (selenium) as catalyst, which successfully brings SLS into the realm of conventional low‐temperature solution synthesis. As a proof‐of‐concept application, the NiSe nanowire array was used as a catalyst for electrochemical water oxidation. This approach offers a new possibility to design arrays of inorganic nanowires.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call