Abstract

Ternary CuInTe2 and quaternary CuInSe xTe2- x nanowires were successfully synthesized for the first time by a solution-liquid-solid (SLS) mechanism. Crystalline, straight, and nearly stoichiometric CuInTe2 and CuInSe xTe2- x nanowires were readily achieved by using the molecular precursors and in the presence of molten Bi nanoparticles and coordinating capping ligands. The temperature and reactant order-of-addition of this reaction strongly affected the composition of the reaction product and the morphology obtained. These CuInTe2 and CuInSe xTe2- x nanowires are outstanding light absorbers from the near-IR through the visible and ultraviolet spectral regions and, thereby, comprise new soluble and machinable "building blocks" for applications in solar-light utilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.