Abstract

This article presents new elementary Green's functions for displacements and stresses created by a unit heat source applied in an arbitrary interior point of a half-strip. We also obtain the corresponding new integration formulas of Green's and Poisson's types which directly determine the thermal stresses in the form of integrals of the products of internal distributed heat source, temperature, or heat flux prescribed on boundary and derived thermoelastic influence functions (kernels). All these results are presented in terms of elementary functions in the form of a theorem. Based on this theorem and on derived early by author general Green's type integral formula, we obtain a new solution to one particular boundary value problem of thermoelasticity for half-strip. The graphical presentation of thermal stresses created by a unit point heat source and of thermal stresses for one particular boundary value problem of thermoelasticity for half-strip is also included. The proposed method of constructing thermoelastic Green's functions and integration formulas are applicable not only for a half-strip but also for many other two- and three-dimensional canonical domains of Cartesian system of coordinates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call