Abstract

A generalization of the function of influence of a unit heat source to the displacements is suggested for the boundary value problems in the dynamical uncoupled thermoelasticity. This generalization is a convolution over time and bulk of two influence functions. One of them is a Green's function for the heat conduction problem. The other is a function of influence of unit concentrated forces onto bulk dilatation. Broad possibilities are shown in constructing these influence functions. In particular, the theorem on dilatation constructing is proved. To calculate the convolutions successfully the following properties of the introduced function are found to be useful. (1) In coordinates of the point of observation, the function satisfies the equations used to find the Green's functions in the problem of heat conduction, with the unit heat source being replaced by the influence function of concentrated force onto dilatation; and (2) in coordinates of the point of heat source application, it satisfies the boundary value problem used to find Green's matrix, with the unit concentrated forces being replaced by derivatives of Green's function in the problem of heat conduction. Based on the introduced influence function, some new integral formulae for displacements and stresses are obtained, which are a generalization of Mysel's formula in the theory of dynamical thermal stresses. The proposed formulae have certain advantages allowing us to unite the two-staged process of finding the solutions for boundary value problems in thermoelasticity in a single stage. It is established that, based on the obtained results it becomes possible to compile a whole handbook on the influence functions and integral solutions for boundary value problems in dynamical thermoelasticity. As examples, the solutions for two boundary value problems in the theory of dynamical thermal stresses for the half-space and quarter-space are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.