Abstract

The aluminum oxide materials are widely used in ceramics, refractories and abrasives due to their hardness, chemical inertness, high melting point, non-volatility and resistance to oxidation and corrosion. The paper describes work done on synthesis of α-alumina by using the simple, non-expensive solution combustion method using glycine as fuel.Aluminum oxide (Al2O3) nanoparticles were synthesized by aluminum nitrate 9-hydrate as precursor and glycine as fuel. The samples were characterized by high resolution transmission electron microscopy (HRTEM), field effect scanning electron microscopy (FESEM), X-ray diffraction (XRD) and electron dispersive spectroscopy (EDS). As there are many forms of transition aluminas produced during this process, x-ray diffraction (XRD) technique was used to identify α-alumina. The diameter of sphere-like as-prepared nanoparticles was about 10 nm as estimated by XRD technique and direct HRTEM observation. The surface morphological studies from SEM depicted the size of alumina decreases with increasing annealing temperature. Absorbance peak of UV-Vis spectrum showed the small bandgap energy of 2.65 ev and the bandgap energy increased with increasing annealing temperature because of reducing the size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call