Abstract
Many studies have implicated dissolved organic carbon (DOC) as an important contributor to the elevated mobility of trace metals in soils amended with biosolids. Few of these studies, however, have quantified both DOC and metal concentrations. We completed laboratory leaching column studies on a dryland Platner loam (fine, smectitic, mesic Aridic Paleustoll) and an irrigated Osgood sand (loamy, mixed, mesic Arenic Ustollic Haplargid), both with a history of biosolids application. The soils were neutral to slightly alkaline in pH prior to amendment. We performed an additional application of biosolids to one set of columns in the laboratory at a rate of 28 Mg ha(-1) to investigate the effect of time following application on metal mobility. The effect of electrolyte concentration was studied by using both distilled water and simulated irrigation water. Biosolids application increased both DOC and Cu in the column effluents resulting in a positive correlation between Cu and DOC across application treatments for both soils. Both Cu and Pb were mobilized under conditions of low electrical conductivity (EC). This may be the result of the release of a strong metal-binding component of DOC under these conditions. Conversely, Zn mobility was positively correlated with EC, suggesting that either cation exchange or the formation of inorganic complexes influences Zn mobility. Anodic stripping voltammetry measurements indicated that only a small percentage of the total dissolved metals existed as free ions or inorganic complexes; the remainder appears to be complexed to DOC.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have