Abstract
Cellulose fibers have been one of the most common fibers due to their biodegradability, excellent mechanical properties, biocompatibility, high absorption ability, cheapness and renewability. In this study, novel, simple and green method is concerned with the production of multifunctional cellulose nanofibers (CNFs). Nanocomposites consisting of silver nanoparticles (AgNPs) and polyaniline (PANi) were in situ synthesized into plasma-pretreated cellulosic nanofibers fabricated by solution blowing spinning technique. The produced cellulose acetate nanofibers were then subjected to deacetylation followed by plasma-activation followed by a treatment with aniline and silver nitrate (AgNO3) in the presence of ammonium acetate. Plasma-assisted oxidation polymerization process of aniline into PANi associated with a reduction of Ag+ into AgNPs results in their permanent insolubility into the surface of the cellulose nanofibers. The morphologies and elemental contents were determined by polarizing optical microscope (POM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), energy-dispersive X-ray patterns and scanning electron microscopy (SEM). Additionally, transmission electron microscope (TEM) was applied to explore the morphologies of silver nanoparticles and PANi showing particle diameter between 12 and 25 nm. The antimicrobial Ag NPs were formed from an aqueous medium of silver nitrate by taking the reduction ability advantage of the electrically active PANi. The immobilization of polyaniline and silver nanoparticles into the surface of the cellulose nanofibers enhanced its electrical conductivity. The produced CNFs demonstrated a high UV protection as well as antibacterial activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.