Abstract

Steady-state spectra, rotation times, and time-resolved emission spectra of the probe 4-aminophthalimide (4-AP) in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim+][PF6-]) were measured over the temperature range 298−355 K. The steady-state spectroscopy indicates that the solvation energetics of 4-AP in [bmim+][PF6-] are comparable to those of 4-AP in highly polar but aprotic solvents such as dimethylformamide and acetonitrile (π* ∼ 0.8, ∼ 0.4). The rotation of 4-AP in [bmim+][PF6-] and in more conventional aprotic solvents generally conforms to the expectations of simple hydrodynamic models. Other than the fact that [bmim+][PF6-] is highly viscous, nothing distinguishes the rotation of 4-AP in this ionic liquid from its rotation in more conventional polar aprotic solvents. Time-dependent emission spectra, recorded with an instrumental response of 25 ps, indicate that solvation dynamics in [bmim+][PF6-] occur in two well-separated time regimes. Near to room temperature, the obser...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call