Abstract

The states of water sorbed in a cross-linked polyethylene glycol (PEG) gel, TSKgel Ether-250, and cross-linked poly(vinyl alcohol) (PVA) gels of different pore sizes, TSKgel Toyopearl HW-40S, 50S, 55S and 75S, were investigated by means of differential scanning calorimetry (DSC). It was found that there were three types of water in these hydrogels, non-freezing water, freezable bound water and free water. The amount of water that functions as the stationary phase in the column packed with the each gel was also estimated by a liquid chromatographic method. The estimated amount of the stationary phase water is in good agreement with the sum of the amount of non-freezing water and that of freezable bound water for HW-40S, 50S and 55S, while it agrees with the amount of only non-freezing water for HW-75S and Ether-250. This means that the stationary phase water consists of non-freezing water and freezable bound water for HW-40S, 50S and 55S, while only non-freezing water functions as the stationary phase in HW-75S and Ether-250 gels. This result can be attributed to the difference in the structure of the gels; the PVA gels containing PVA at relatively high concentrations, HW-40S, 50S and 55S, have a homogeneous gel phase, whereas HW-75S and Ether-250 have a heterogeneous gel phase consisting hydrated polymer domains and macropores with relatively hydrophobic surface. The freezable bound water in Toyopearl HW-40S, 50S and 55S can be regarded as a component of a homogeneous PVA solution phase, while that in HW-75S and Ether-250 may be water isolated in small pores of the hydrophobic domains. The results obtained by the investigation on the retention selectivity of these hydrogels in aqueous solutions supported our postulated view on the structures of the hydrogels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call