Abstract

Matematika berperan penting dalam perkembangan IPTEK, salah satunya dengan menggunakan model matematika untuk menjelaskan berbagai fenomena yang ada di masyarakat. Penelitian ini bertujuan untuk mengetahui solusi numerik model SIR pada penyakit tuberkulosis dengan mengunakan metode RKF 45. Pada penelitian ini, menggunakan metode Runge Kutta Fehlberg (RKF 45) sebagai salah satu metode numerik untuk menyelesaikan sistem persamaan diferensial nonlinier. Metode RKF 45 adalah metode numerik satu langkah dengan ketelitian yang tinggi dikarenakan memiliki 6 konstanta perhitungan yang berperan untuk memperbarui solusi sampai orde 5. Model SIR penderita penyakit tuberkulosis yang berbentuk sistem persamaan differensial yang mencakup jumlah populasi individu rentan dengan simbol S (Susceptible), populasi individu terinfeksi dengan simbol I (Infected), dan populasi individu sembuh dengan simbol R (Recovered). Hasil penelitian ini menunjukkan bahwa pada saat t = 5000 dan h = 0,01 dengan metode RKF 45 orde empat diperoleh solusi 〖 S〗_5000=7355233,I_5000=36.59276,R_5000=28685.55, dan metode RKF 45 orde lima diperoleh solusi〖 S〗_5000=7355233,I_5000=36.59277,R_5000=28685.55 . Berdasarkan hasil penelitian ini dapat diambil kesimpulan bahwa metode RKF 45 merupakan metode numerik dengan ketelitian yang tinggi dalam menyelesaikan sistem persamaan diferensial nonlinier.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.