Abstract

The solubilization of two pharmaceutically active ingredients (AI) with significantly different water solubility, namely carbamazepine and fenofibrate (solubility of 150ppm and 10ppm, respectively), has been investigated using a series of Pluronics® (Poloxamers) containing different ethylene oxide and propylene oxide (EO/PO) units in the molecule. The results show largely enhanced solubilization of fenofibrate by Pluronic® micelles that increases with the PPO chain length provided the temperature is above the critical micelle temperature (cmt). In contrast the more water-soluble carbamazepine only shows a moderate increase in solubilization upon addition of Pluronics®. Small angle neutron scattering (SANS) and pulsed field gradient (PFG) NMR experiments show that the solubilization of fenofibrate occurs in the core of the micelles, whereas carbamazepine shows no direct association with the micelles. These clearly different solubilization mechanisms for the two AIs were confirmed by Nuclear Overhauser Enhancement Spectroscopy (NOESY) experiments, which show that fenofibrate interacts only with the PPO core of the micelle, whereas carbamazepine interacts with both PPO and PEO similarly. Accordingly, the large enhancement of the solubilization of fenofibrate is related to the fact that it is solubilized within the PPO core of the Pluronic® micelles, while the much more moderate increase of carbamazepine solubility is attributed to the change of solvent quality due to the presence of the amphiphilic copolymer and the interaction with the EO and PO units in solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.