Abstract

The influence of alkyl chain length of cations on cellulose solubility in a neat imidazolium (MIM)-based ionic liquid (IL) [CnMIM][OAc] and [CnMIM][OAc]–DMSO binary system (n=0–6) was investigated. The correlation between cellulose solubility and Kamlet–Taft hydrogen bond basicity (β) was also examined. Cellulose solubility (g per mol IL) in neat [CnMIM][OAc] increased as the cation alkyl chain length decreased from 6 to 2. However, alkyl chain lengths of 1 and 0 resulted in extremely poor cellulose solubility, indicating that a chain length of 2 was optimal for dissolution of cellulose in the system. Cellulose solubility in the [CnMIM][OAc]–DMSO binary system (n=1–6) was greater than that in neat IL, with maximum solubility occurring at an IL mole fraction of ~0.2. Maximum cellulose solubility in the [CnMIM][OAc]–DMSO binary system was slightly better at even alkyl chain lengths (n=2, 4, or 6) than at odd chain lengths (n=1, 3, or 5), with the best solubility at n=4. More interestingly, maximum cellulose solubility and specific IL mole fraction in the IL-DMSO binary system were related with the β values of neat ILs, even with ILs containing different anionic species or cation alkyl chain lengths. This indicates that solubility information in IL-DMSO binary systems is influenced by the characteristics of neat ILs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call