Abstract

We explore stability regions for solitons in the nonlinear Schrödinger equation with a spatially confined region carrying a combination of self-focusing cubic and septimal terms, with a quintic one of either focusing or defocusing sign. This setting can be implemented in optical waveguides based on colloids of nanoparticles. The solitons’ stability is identified by solving linearized equations for small perturbations, and is found to fully comply with the Vakhitov–Kolokolov criterion. In the limit case of tight confinement of the nonlinearity, results are obtained in an analytical form, approximating the confinement profile by a delta-function. It is found that the confinement greatly increases the largest total power of stable solitons, in the case when the quintic term is defocusing, which suggests a possibility to create tightly confined high-power light beams guided by the spatial modulation of the local nonlinearity strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.