Abstract
Abstract For a higher-dimensional integrable nonlinear dynamical system, there are abundant coherent soliton excitations. With the aid of a projective Riccati equation approach, the paper obtains several types of exact solutions to the (2 + 1)-dimensional dispersive long wave (DLW) equation which include multiple soliton solution, periodic soliton solution and Weierstrass function solution. Subsequently, several multisolitons are derived and some novel features are revealed by introducing lower-dimensional patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.