Abstract

Since a few recent decades, investigation of nonlinear evolution equations (NLEEs) is becoming an important area of research as they have a variety of applications in various branches of social and scientific disciplines like Ecology, Social Dynamics, Financial Mathematics, Engineering and many branches of Physics such as Biophysics, Chemical Physics, Fibre Optics, Fluid Mechanics, Neuro-physics, Particle Physics, Solid State Physics and many more. Many powerful and efficient methods of finding exact solutions of NLEEs have been proposed so far and the Trial Equation Method [ 1 - 5] is one of them. Many authors have successfully used the method in finding exact solutions of a number of NLEEs. In the present paper, soliton solutions of the Coupled Higgs Field Equation [ 6 - 10 ] are being obtained using the Trial Equation Method. The Coupled Higgs Field Equation describes system of conserved scalar nucleons interacting with neutral scalar mesons in particle physics. This coupled equation has applications in the studies of Field Theory and Electromagnetic waves as well. This coupled equation introduces the Higgs field to illustrate the mechanism of generation of mass for Gauge Bosons. The Coupled Higgs Field Equation is generally expressed as the following pair of NLEEs                                                                                                                                                          (3) and                                                                                                                                                                          (2) Here, x and t are spatial and temporal variables respectively, the function  is a complex scalar nucleon field, the function  is a real scalar meson field,  are arbitrary real constants and the subscripts denote partial differentiations with respect to them.Using the Trial Equation Method, the above coupled NLEE is to be solved to obtain some soliton solutions.

Highlights

  • Since a few recent decades, investigation of nonlinear evolution equations (NLEEs) is becoming an important area of research as they have a variety of applications in various branches of social and scientific disciplines like Ecology, Social Dynamics, Financial Mathematics, Engineering and many branches of Physics such as Biophysics, Chemical Physics, Fibre Optics, Fluid Mechanics, Neuro-physics, Particle Physics, Solid State Physics and many more

  • The Coupled Higgs Field Equation describes system of conserved scalar nucleons interacting with neutral scalar mesons in particle physics

  • The Coupled Higgs Field Equation is generally expressed as the following pair of NLEEs utt − uxx − βu + γ|u|2 u − 2uv = 0 (3)

Read more

Summary

Introduction

Since a few recent decades, investigation of nonlinear evolution equations (NLEEs) is becoming an important area of research as they have a variety of applications in various branches of social and scientific disciplines like Ecology, Social Dynamics, Financial Mathematics, Engineering and many branches of Physics such as Biophysics, Chemical Physics, Fibre Optics, Fluid Mechanics, Neuro-physics, Particle Physics, Solid State Physics and many more. Many authors have successfully used the method in finding exact solutions of a number of NLEEs. In the present paper, soliton solutions of the Coupled Higgs Field Equation [ 6 - 10 ] are being obtained using the Trial Equation Method. The Coupled Higgs Field Equation describes system of conserved scalar nucleons interacting with neutral scalar mesons in particle physics. This coupled equation has applications in the studies of Field Theory and Electromagnetic waves as well. This coupled equation introduces the Higgs field to illustrate the mechanism of generation of mass for Gauge Bosons. Using the Trial Equation Method, the above coupled NLEE is to be solved to obtain some soliton solutions

Outlines of trial equation method
Application of trial equation method to coupled higgs field equation
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call