Abstract

A detailed experimental investigation about the propagation of a fundamental soliton interacting with a weak dispersive pulse at an optical event horizon is presented. The results show that the soliton is either redshifted or blueshifted depending on the wavelength of the dispersive pulse. As a consequence of such a wavelength shift, the soliton is either stretched or compressed. The results thus demonstrate the possibility of controlling the propagation of an intense optical pulse by means of a less powerful pulse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.