Abstract

The propagation of optical pulses in nonlinear waveguide and directional coupler structures consisting of linear and self-focusing media is studied numerically. Instantaneous and integrating nonlinearities are considered. A comparison of the stability of waveguide modes and coupling characteristics under such conditions is made. Finite medium responses times are shown to lead to an increase in the stability of pulses propagating in waveguide structures. For directional coupler geometries it is shown that finite response times lead to a loss of definition between the cross and bar states as the coupling efficiencies of more intense pulses are increased. These effects are found to be dependent on the initial, spatial, and temporal pulse profiles.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.