Abstract

Parts II, III and IV of this series are devoted to proving long time stability of solitary waves in one-dimensional nonintegrable lattices with Hamiltonianwith a general nearest-neighbour potential V. Here in part III we analyse the evolution equation obtained by linearizing the dynamics at a solitary wave. This equation is nonautonomous, because discrete solitary waves are not time-independent modulo a spatial shift (like their continuous counterparts), but time-periodic modulo a spatial shift.We develop a Floquet theory modulo shifts on the lattice that naturally characterizes the time-t evolution on the lattice in terms of a strongly continuous group of operators on the real line, in a manner reminiscent of Howland's treatment of quantum scattering with time-periodic potentials. This allows us to reduce the main hypothesis of our nonlinear stability theorem in part II (namely, exponential decay in the linearized dynamics on the symplectic complement to the solitary-wave manifold) to an eigenvalue condition on the generator of the group, which is a differential-difference operator on the real line. Physically, the eigenvalue condition means that no spatially localized modes of constant shape exist which travel at the solitary wave speed and have exponentially growing or neutral amplitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.