Abstract
Eight finite difference methods are employed to study the solitary waves of the equal-width (EW) and regularized long–wave (RLW) equations. The methods include second-order accurate (in space) implicit and linearly implicit techniques, a three-point, fourth-order accurate, compact operator algorithm, an exponential method based on the local integration of linear, second-order ordinary differential equations , and first- and second-order accurate temporal discretizations. It is shown that the compact operator method with a Crank–Nicolson discretization is more accurate than the other seven techniques as assessed for the three invariants of the EW and RLW equations and the L 2 -norm errors when the exact solution is available. It is also shown that the use of Gaussian initial conditions may result in the formation of either positive or negative secondary solitary waves for the EW equation and the formation of positive solitary waves with or without oscillating tails for the RLW equation depending on the amplitude and width of the Gaussian initial conditions. In either case, it is shown that the creation of the secondary wave may be preceded by a steepening and an narrowing of the initial condition. The creation of a secondary wave is reported to also occur in the dissipative RLW equation, whereas the effects of dissipation in the EW equation are characterized by a decrease in amplitude, an increase of the width and a curving of the trajectory of the solitary wave. The collision and divergence of solitary waves of the EW and RLW equations are also considered in terms of the wave amplitude and the invariants of these equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.