Abstract
This work presents a computational comparison study of quadratic, cubic, quartic and quintic splines for solving the modified regularized long wave (MRLW) equation. Collocation schemes with quadratic and cubic splines are found to be unconditionally stable. The fourth-order Runge–Kutta method has been used to solve the collocation schemes when quartic and quintic B-splines are used. The three invariants of motion have been evaluated to determine the conservation properties of the suggested algorithms. Comparisons of results due to different schemes with the exact values shows the accuracy and efficiency of the proposed schemes. Results corresponding to higher order splines are more accurate than those corresponding to lower order splines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.