Abstract

To investigate the performance of combined 18F-FDG Positron Emission Tomography/Computed Tomography with high-resolution CT for differentiating invasive adenocarcinoma from adenocarcinoma in situ (pre-invasive lesion) or minimally invasive adenocarcinoma in stage IA lung cancer patients with solitary ground-glass opacity nodules. This retrospective study enrolled 58 consecutive stage IA pulmonary adenocarcinoma patients with solitary ground-glass opacity nodules. The characteristics and measurements of the ground-glass opacity nodules as pure ground-glass opacity nodules and mixed ground-glass opacity nodules in the pre-invasive or minimally invasive adenocarcinoma and invasive adenocarcinoma groups on Positron Emission Tomography/Computed Tomography and high-resolution CT were compared and analyzed. Ground-glass opacity nodules in the pre-invasive or minimally invasive adenocarcinoma group preferentially manifested as pure ground-glass opacity nodule (p < 0.01) compared to the invasive adenocarcinoma group. While cystic appearance was more common in the invasive adenocarcinoma group (p < 0.05). Significant differences were found in the diameter of the ground-glass opacity nodule itself and its solid component, and consolidation/tumor ratio between the two groups. The sensitivity in predicting invasive adenocarcinoma was higher with a combined consolidation/tumor ratio > 0.38 and SUVmax > 1.46 in mixed ground-glass opacity nodule when compared to those of SUVmax > 0.95 alone or consolidation/tumor ratio> 0.39 alone (both p > 0.05). For a mixed ground-glass opacity nodule combined consolidation/tumor ratio > 0.38 and SUVmax > 1.46 appears to better predict invasive adenocarcinoma in stage IA lung cancer patients with solitary ground-glass opacity nodules.

Highlights

  • Ground-glass opacity (GGO) is defined as an area of hazy increased attenuation that does not obscure underlying bronchial structures or vascular markings on high-resolution computed tomography (HRCT) [1]

  • Significant differences were found in the diameter of GGN (DGGN), Dsolid, and consolidation/ tumor ratio (CTR) between the two groups

  • DGGN and Dsolid were respectively correlated with both SUVmax and CTR, whereas cystic appearance was reverse correlated with both SUVmax and CTR

Read more

Summary

Introduction

Ground-glass opacity (GGO) is defined as an area of hazy increased attenuation that does not obscure underlying bronchial structures or vascular markings on high-resolution computed tomography (HRCT) [1]. Patients with stage IA lung adenocarcinoma (i.e., peripheral lung cancers ≤ 3 cm in diameter without nodal and distant metastasis), usually present as a solitary ground-glass opacity nodule (GGN) on HRCT [2,3,4,5], and have a 5-year disease-free survival rate approaching 88% [6]. A percentage of 0.5 or less of the solid component of a GGN can identify early lung adenocarcinoma with clinical T1bN0M0 patients [13] and can be a useful independent preoperative prognostic indicator [23]. Among various strategies over morphologic evaluation, contrast-enhanced and dynamic MDCT have been applied to assess malignant GGNs with limited additional information [12]. Perfusion MDCT shows us promising for lung cancer [24], the increased radiation dose restricts its clinical application

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call