Abstract

We reported the phase formation sequences in 50Pt/50fcc-Co(001) and 32Pt/68fcc-Co(001) thin films after annealing up to 850 °C. In both cases, the ordered L10 phase formed first on the Pt/Co interface at ∼400 °C and as the annealing temperature increased the L10 phase transformed into the chemically disordered fcc A1 phase in 50Pt/50fcc-Co(001) at 750 °C and in 32Pt/68fcc-Co(001) films at 550 °C. Based on the analysis of solid-state reactions in thin films, a phase transition at ∼ 400 °C is predicted in Co-Pt systems with a 32–72% Pt composition. Torque measurements of the 50Pt/50fcc-Co(001) samples showed that the rotatable magnetic anisotropy coexisted with the three variants of L10 in a temperature range of 400–750 °C. An analysis of the torque curves revealed that the L10 films consist of a soft magnetic layer epitaxially intergrown to the substrate MgO(001) and a top layer having rotatable magnetic anisotropy. It showed that the magnetically hard properties of L10 films are associated with a rotatable magnetic anisotropy layer. A model of rotatable magnetic anisotropy is reasoned, which is founded on some identical mechanisms of rotatable magnetic anisotropy and magnetic-field-induced strains, explaining the ferromagnetic shape-memory effect in Heusler alloys. Our results suggested that the rotatable magnetic anisotropy phenomena may have an important role in the origin of perpendicular anisotropy in hard magnetic L10 structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.