Abstract

Knowledge of the state of ionization and tautomerization of heteroaromatic cofactors when enzyme-bound is essential for formulating a detailed stepwise mechanism via proton transfers, the most commonly observed contribution to enzyme catalysis. In the bifunctional coenzyme, thiamin diphosphate (ThDP), both aromatic rings participate in catalysis, the thiazolium ring as an electrophilic covalent catalyst and the 4'-aminopyrimidine as acid-base catalyst involving its 1',4'-iminopyrimidine tautomeric form. Two of four ionization and tautomeric states of ThDP are well characterized via circular dichroism spectral signatures on several ThDP superfamily members. Yet, the method is incapable of providing information about specific proton locations, which in principle may be accessible via NMR studies. To determine the precise ionization/tautomerization states of ThDP during various stages of the catalytic cycle, we report the first application of solid-state NMR spectroscopy to ThDP enzymes, whose large mass (160,000-250,000 Da) precludes solution NMR approaches. Three de novo synthesized analogues, [C2,C6'-(13)C(2)]ThDP, [C2-(13)C]ThDP, and [N4'-(15)N]ThDP used with three enzymes revealed that (a) binding to the enzymes activates both the 4'-aminopyrimidine (via pK(a) elevation) and the thiazolium rings (pK(a) suppression); (b) detection of a pre-decarboxylation intermediate analogue using [C2,C6'-(13)C(2)]ThDP, enables both confirmation of covalent bond formation and response in 4'-aminopyrimidine ring's tautomeric state to intermediate formation, supporting the mechanism we postulate; and (c) the chemical shift of bound [N4'-(15)N]ThDP provides plausible models for the participation of the 1',4'-iminopyrimidine tautomer in the mechanism. Unprecedented detail is achieved about proton positions on this bifunctional coenzyme on large enzymes in their active states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.