Abstract
Organic matter is an important component of soil with regard to the binding of contaminants. Hence, the partitioning of organic matter influences the partitioning of soil contaminants. The partitioning of organic matter is, among other factors, influenced by the ionic composition and ionic strength of the soil solution. This study focuses on the behavior of organic matter after a change in the ionic composition of the soil solution, particularly in Ca concentration and pH. Different amounts of Ca(NO3)2 and NaOH were added to soil suspensions. The dissolved organic carbon (DOC) concentration increased with increasing pH (addition of NaOH), whereas an increase in Ca (addition of Ca(NO3)2) had the opposite effect. A stronger increase in DOC was observed if a single dose of NaOH was added, compared to a gradual addition of the same amount of NaOH. Cation binding by organic matter in the supernatant was calculated using the NICA-Donnan model. The log DOC concentration appeared to be correlated to the Donnan potential, calculated under the assumption that all DOC equals humic acid. This correlation was found for all eight neutral to acidic soils used in this study, although the slopes and elevations of the regression lines varied. The slope varied by a factor of 2 and the elevation appeared to be strongly influenced by the DOC concentration in the untreated soils, which is related to the total organic matter in the soil. Finally, we predicted the Donnan potential on the basis of an extraction of untreated soil with 0.03 M NaNO3, and the total additions of Ca(NO3)2 and NaOH. Comparison of these predictions with speciation calculations in solution showed a good correlation, indicating that a combination of one batch experiment and the presented calculation procedure can provide good estimations of DOC concentrations after addition of chemicals.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have