Abstract

In order to measure low concentrations of analytes in plasma and urine, it is often necessary to extract and concentrate them. With solid-phase extraction (SPE), this is achieved by partitioning the analytes between a solid and a liquid or headspace vapour. A wide range of high-quality materials is now available to do this, offering a variety of separation modes for different applications. These include partitioning using reversed-phase, normal-phase, ion-exchange, restricted-access and immunoaffinity sorbents or molecularly imprinted polymers and, increasingly, combinations of these processes. Solid-phase microextraction was introduced to analyse volatile and semi-volatile compounds. The range of sampling formats has expanded from simple packed syringes to cartridges, disks, SPE pipette tips and 96-well plates. These developments have facilitated automated off- and on-line sample processing. The basic principles of SPE and the recent innovations are reviewed here. This is a technological growth area. Some of the developments are finding application in clinical toxicology. However, they could also be of wider value in clinical chemistry--for example, for analyses of volatile and non-volatile metabolites, peptides, radioactive elements and trace metal speciation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.