Abstract
Hypermonotectic alloys of Al-5 wt% Pb and Al-5 wt% Pb-0.5 wt% X where X = Mn, Cu, Zn, Fe and Si have been manufactured by chill-casting and melt-spinning. The resulting microstructures have been examined by a combination of optical microscopy, scanning and transmission electron microscopy, and electron probe microanalysis. The as-solidified hypermonotectic alloys exhibit a homogeneous bimodal distribution of faceted Pb particles embedded in a matrix of Al, with chill-cast Pb particle sizes of 1–2 μm and 5–50 μm, and melt-spun Pb particle sizes of 5–10 nm and 50–100 nm. The larger Pb particles are formed during cooling through the region of liquid immiscibility while the smaller Pb particles are formed during monotectic solidification of the Al matrix. The Pb particles exhibit a cube-cube orientation relationship with the Al matrix, and a truncated octahedral shape with {111} and {100} facets. The as-solidified Pb particle distributions are resistant to coarsening during post-solidification heat treatment. The equilibrium Pb particle shape and therefore the anisotropy of solid Al-solid Pb and solid Al-liquid Pb surface energies have been monitored by in situ heating in the transmission electron microscope over the temperature range between room temperature and 550°C. The anisotropy of solid Al-solid Pb surface energy is constant between room temperature and the Pb melting point, with the {100} surface energy 14% greater than the {111} surface energy, in good agreement with geometric near-neighbour bond energy calculations. The {100} facets disappear when the Pb particles melt, and the anisotropy of solid Al-liquid Pb surface energy decreases gradually with increasing temperature above the Pb melting point, until the Pb particles become spherical at about 550°C. The kinetics of Pb particle solidification have been examined by heating and cooling experiments in a differential scanning calorimeter. Pb particle solidification is nucleated catalytically by the Al matrix on the {111} facet surfaces, with an undercooling of 22K and a contact angle of 21°C. Ternary additions of Mn, Cu, Zn and Fe do not influence the Pb particle solidification behaviour, but Si is a potent catalyst and stimulates the Pb particles to solidify close to the equilibrium Pb melting point.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.