Abstract
Experiments were carried to investigate the effect of TiC on the solidification process and microstructure of Al-Pb alloys. It is demonstrated that TiC particles are effective inoculants for the nucleation of the Pb-rich droplets during cooling an Al-Pb alloy in the miscibility gap. A model describing the kinetic behavior of TiC particles in the melt and the liquid-liquid decomposition of Al-Pb was developed. The dissolution, coarsening and precipitation processes of TiC particles as well as the microstructure evolution during the liquid-liquid phase transformation of an Al-Pb alloy were calculated. The numerical results indicate that what determines the refinement efficiency of TiC particles on the Pb-rich droplets/particles is the number density of TiC particles in the melt cooled to the binodal line temperature of the Al-Pb alloy. If the number density of TiC particles in the melt before the beginning of the liquid-liquid decomposition is high enough, the addition of TiC causes a refinement of the Pb-rich droplets/particles and promotes the formation of Al-Pb alloys with a well dispersed microstructure.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have