Abstract

Experiments were carried to investigate the effect of TiC on the solidification process and microstructure of Al-Pb alloys. It is demonstrated that TiC particles are effective inoculants for the nucleation of the Pb-rich droplets during cooling an Al-Pb alloy in the miscibility gap. A model describing the kinetic behavior of TiC particles in the melt and the liquid-liquid decomposition of Al-Pb was developed. The dissolution, coarsening and precipitation processes of TiC particles as well as the microstructure evolution during the liquid-liquid phase transformation of an Al-Pb alloy were calculated. The numerical results indicate that what determines the refinement efficiency of TiC particles on the Pb-rich droplets/particles is the number density of TiC particles in the melt cooled to the binodal line temperature of the Al-Pb alloy. If the number density of TiC particles in the melt before the beginning of the liquid-liquid decomposition is high enough, the addition of TiC causes a refinement of the Pb-rich droplets/particles and promotes the formation of Al-Pb alloys with a well dispersed microstructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.