Abstract

The solidification behavior of the advanced nickel-base alloys, such as Inconel® Alloy 690, is important for understanding their microstructure, properties, and eventual service behavior in nuclear power plant components. Here, an experimental and theoretical program of research is undertaken with the aim of developing a quantitative understanding of the solidification behavior under a wide range of temperature gradients and solidification growth rates. The temperature gradient and solidification rates vary spatially by several orders of magnitude during keyhole mode laser welding. Therefore, the solidification structure is experimentally characterized from microscopic examinations of the resulting fusion zones and correlated with fundamental solidification parameters to provide a widely applicable solidification map that can be employed for a broad range of solidification processes. The cell and secondary dendrite arm spacings are quantitatively correlated with cooling rates. An Alloy 690 solidification map, which illustrates the effect of temperature gradient and solidification rate on the morphology and scale of the solidification structures, is also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.