Abstract

Medium-voltage (MV) SiC devices have been developed recently which can be used for three-phase MV grid tie applications. Two such devices, 15 kV SiC insulated-gate bipolar transistor (IGBT) and 10 kV SiC MOSFET, have opened up the possibilities of looking into different converter topologies for the MV distribution grid interface. These can be used in MV drives, active filter applications, or as the active front end converter for solid-state transformers (SSTs). The transformerless intelligent power substation (TIPS) is one such application for these devices. TIPS is proposed as a three-phase SST interconnecting a 13.8 kV distribution grid with a 480 V utility grid. It is an all SiC device-based multistage SST. This paper focuses on the advantages, design considerations, and challenges associated with the operation of converters using these devices keeping TIPS as the topology of reference. The efficiency of the TIPS topology is also calculated using the experimentally measured loss data of the devices and the high-frequency transformer. Experimental results captured on a developed prototype of TIPS along with its measured efficiency are also given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call