Abstract
We report comprehensive and comparative studies on chemical and electrochemical controls of doping characteristics of various poly(3,4-ethylenedioxythiophene) (PEDOT) composites complexed with sulfonates. Chemical treatment of PEDOT composites was conducted with a dedoping agent, tetrakis(dimethylamino)ethylene (TDAE), resulting in the changes in conformation and bulk charge-carrier density. Electrochemical control of doping states was done with a solid-state ionogel based on an ionic liquid dispersed in a polymer matrix. With this approach, we can fabricate solid-state organic electrolyte-gated transistors (OEGTs) with a large current modulation, a high mobility of holes, and a low driving voltage. Our OEGTs are operational in a dry environment and, surprisingly, form the two-dimensional channel of the interfacial charge carriers modulating the conductance under gate bias, unlike conventional liquid-based OEGTs. The charge-carrier mobility and the on-to-off current ratio reach up to ∼7 cm2 V-1 s-1 and over 104, respectively, from the chemically dedoped PEDOT composites. The ionogel-based gating of the layer of TDAE-treated PEDOT composites induces a reversible transition between a highly doped bipolaronic state and neutral/polaronic states, as revealed by the absorption profiles under gate bias. We also demonstrate in-plane OEGTs, in which the dedoped channel and the conductive source/drain electrodes are made of a single PEDOT composite layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.