Abstract

We demonstrate a solid-state nuclear magnetic resonance technique, with the acronym ROCSA-LG, for the determination of backbone torsion angles psi in peptides with multiple, but isolated, uniformly labeled residues. The method correlates the 13C' chemical shift anisotropy and the 13Calpha-1Halpha heteronuclear dipolar tensors within a single uniformly labeled residue in a two-dimensional (2D) experiment. The technique requires the measurement of only five 2D spectra and is compatible with high-speed magic-angle spinning. Experimental results are presented for the 17-residue alpha-helical peptide MB(i+4)EK and for amyloid fibrils formed by the 15-residue peptide Abeta11-25.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call