Abstract

An improved variant of the popular double cross-polarization (DCP) experiment for heteronuclear dipolar recoupling in solid-state NMR spectroscopy under magic-angle-spinning is introduced. By simple phase and amplitude modulation of the rf irradiation at the Hartman-Hahn sideband conditions, the new pulse sequence, dubbed iDCP, enables broadband excitation with the high efficiency of γ-encoded coherence transfer. The efficiency and robustness of iDCP toward isotropic chemical shift variations and chemical shift anisotropies, in the order typically applying for the backbone atoms in uniformly 13C, 15N-labeled proteins, is demonstrated numerically and experimentally by 15N to 13C coherence transfer for 15N-labeled N-Ac- l-valyl- l-leucine and 13C, 15N-labeled- l-threonine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call