Abstract

A series of solid-state emissive meso-aryl/alkyl-substituted and heteroatom-mixed bisBF2-anchoring fluorophore incorporating pyrrolyl-pyridylhydrazone (BOPPY) dyes have been developed by a one-pot condensation of ketonized or formylated pyrroles and 2-heterocyclohydrazine as well as the subsequent borylation coordination. Interestingly, the BOPPY dyes with meso-alkyl-substituted groups or oxygen-substituted pyridine moieties exhibit high fluorescence quantum yields (QYs) of up to 79%, the highest solid QY of 74%, and long lifetimes independent of polarity in the available BOPPYs. On the other hand, the BOPPYs with meso-aryl or N-substituted moieties display a high solution QY of up to 93% and slight emission wavelength maxima. However, the S-substituted BOPPY dye exhibited weak fluorescence in all studied solvents, which was attributed to the structural flexibility of the N-C-S bond and different from those BOPPYs with O or N substitution, indicated by quantum calculations. And the significant excited-state structural rearrangement in a polar solvent is further confirmed by femtosecond time-resolved transient absorption spectroscopy. More importantly, those novel and barely fluorescent BOPPYs in acetonitrile show advantageous aggregation-induced enhanced emission and viscosity-dependent activities. These advancements in the photophysical and electrochemical properties of BOPPY dyes offer valuable insights into their further development and potential applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call