Abstract

After mulberry (Morus alba) leaves were fermented with Hericium erinaceum mycelium by solid-state culture to enhance physiological activity, fermented mulberry leaves (MA-HE) was extracted by hot-water (MA-HE-HW) and ethanol (MA-HE-E). MA-HE-HW showed enhanced mitogenic and intestinal immune system modulat-ing activities (1.41 and 1.52 fold of saline control, respectively) compared to hot-water extracts of non-fermented mulberry leaves (MA-HW) and H. erinaceum mycelium (HE-HW) at 100 μg/mL. Meanwhile, when we tested the inhibitory effects of extracts on nitric oxide (NO), tumor necrosis factor (TNF)-α, and interleukin (IL)-1β and IL-6 production, MA-HE-E significantly inhibited these pro-inflammatory mediators in LPS-stimulated RAW 264.7 cells (45.1, 41.3, 70.2, and 55.7% inhibition of LPS control at 1,000 μg/mL). In addition, MA-HE-HW and MA-HE-E did not show any cytotoxicity on RAW 264.7 cells at 1,000 μg/mL whereas HE-E and MA-E indicated cytotoxicity (80.1 and 30.7% cell viability of saline control). These results suggest that mulberry leaves fermented with H. erinaceum by solid-state culture might have enhanced immunomodulatory and anti-inflammatory effects compared to non-fermented mulberry leaves, resulting in ingredients biotransformed for fermentation with H. erinaceum mycelium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.