Abstract
Introduction: Hericium erinaceus is known as a medicinal edible mushroom owing to its antimicrobial, antioxidant, anti-tumor and immunomodulatory effects. Helicobacter pylori infection is one of the major health concerns worldwide due to its high rate in global populations, frequent recurrence, and rapid emergence of drug-resistant strains. The present study aims to investigate antioxidant anti-H. pylori and urease inhibitory activities of solvent fractions from H. erinaceus mycelium and culture filtrate.
 Methods: H. erinaceus mycelium was purely cultured in a liquid medium. A polysaccharide fraction was obtained from the culture filtrate by precipitation with ethanol. The mycelium and culture filtrate were extracted by liquid extraction to obtain solvent-soluble fractions. The antibacterial effects of these fractions were determined using paper disc diffusion and broth microdilution assays. Urease inhibition was determined using the salicylate-hypochlorite method. The antioxidant activity of H. erinaceus was evaluated via 2,2,1-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity.
 Results: The ethyl-acetate (EtOAc) fractions derived from H. erinaceus culture filtrate (fEtOAc Fr.) and mycelium (mEtOAc Fr.) showed the strongest anti-H. pylori activity with MIC (MBC) of 1.25 – 1.5 (5.0 – 7.5) mg/mL and potential urease inhibitory activity with IC50 of 0.34 – 0.35 mg/mL. In addition, fEtOAc Fr. exhibited the greatest antioxidant activity (IC50, 11.83 mg/mL), which was slightly stronger than that of mEtOAc Fr. (IC50, 14.75 mg/mL). Moreover, our study also found that the water fractions from the culture filtrate (fWater Fr.) and the mycelium (mWater Fr.) displayed considerable inhibitory activities against bacterial urease (IC50, 1.26 – 1.40 mg/mL), although they had low or no anti-H. pylori activities and low antioxidant properties.
 Conclusion: The present study revealed that the EtOAC fractions derived from the H. erinaceus mycelium and culture filtrate potentially have anti-H. pylori, anti-urease and antioxidant activities. These results suggest that H. erinaceus mycelium and culture filtrate could be utilized to develop functional foods and nutraceuticals to prevent H. pylori infection. More research is needed to prove the safety of the H. erinaceus mycelium and culture filtrate fractions and their in vivo efficacy in the treatment of H. pylori infection.
Highlights
Hericium erinaceus is known as a medicinal edible mushroom owing to its antimicrobial, antioxidant, anti-tumor and immunomodulatory effects
The polysaccharide fraction from the culture filtrate of H. erinaceus showed a lower antioxidant effect than the EtOAc fractions from both the mycelium and culture filtrate. These results indicate that the EtOAC fractions from the mycelium and culture filtrate of H. erinaceus could exert growth-inhibiting and urease inhibitory effects on H. pylori to enhance antioxidant defense and protect the human stomach from H. pylori infection
More research is needed to prove the safety of the H. erinaceus mycelium and culture filtrate fractions and their in vivo efficacies in the treatment of H. pylori infection
Summary
Hericium erinaceus is known as a medicinal edible mushroom owing to its antimicrobial, antioxidant, anti-tumor and immunomodulatory effects. The present study aims to investigate antioxidant, anti-H. pylori, and urease inhibitory activities of solvent fractions from H. erinaceus mycelium and culture filtrate. Results: The ethyl-acetate (EtOAc) fractions derived from H. erinaceus culture filtrate (fEtOAc Fr.) and mycelium (mEtOAc Fr.) showed the strongest anti-H. pylori activity with MIC (MBC) of 1.25 – 1.5 (5.0 – 7.5) mg/mL and potential urease inhibitory activity with IC50 of 0.34 – 0.35 mg/mL. Our study found that the water fractions from the culture filtrate (fWater Fr.) and the mycelium (mWater Fr.) displayed considerable inhibitory activities against bacterial urease (IC50, 1.26 – 1.40 mg/mL), they showed low or no anti-H. pylori and antioxidant activities. Conclusion: The present study revealed that the EtOAC fractions derived from the H. erinaceus mycelium and culture filtrate potentially have anti-H. pylori, anti-urease and antioxidant activities. H. erinaceus extracts were found to have antimicrobial activities against both Grampositive and -negative pathogenic bacteria [11,12], and both antibiotic-resistant and -susceptible Helicobacter pylori 13, a human gastrointestinal pathogen involved in gastritis, duodenal ulcers, and gastric can-
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.