Abstract
The molecular dynamics of the collagen backbone in intact connective tissues has been elucidated using 13C line shape analysis. Since one-third of the amino acid residues in collagen are glycines, we have labeled: (a) reconstituted lathrytic (uncross-linked) chick calvaria collagen fibrils; (b) rat tail tendon (cross-linked); and (c) rat calvaria (cross-linked and mineralized) collagen with [1-13C]glycine. The proton-enhanced and normal 90 degrees - t proton-decoupled spectrum of each collagen sample shows an asymmetric chemical shift powder pattern for the glycine carbonyl carbon. The powder line width, delta, (delta = sigma zz - sigma xx) at 22 degrees C for the uncross-linked reconstituted collagen fibril is 108 ppm, whereas the maximum value of delta (140 ppm) is observed for the cross-linked and mineralized collagen fibrils in rat calvaria. The powder line widths for the cross-linked fibrils in tail tendons and demineralized calvaria are 124 and 120 ppm, respectively. However, since the same line shape and line width (145 ppm) are observed for all samples at -35 degrees C, the difference in delta values observed at room temperature is attributed to differences in molecular mobility of collagen in various samples. The line shapes are analyzed using a dynamic model in which azimuthal orientation of the collagen backbone is assumed to fluctuate as a consequence of reorientation about the helix axis. The observed line shapes are sensitive to motions having correlation times less than approximately 10(-4) s and the analysis provides the values of the root mean square fluctuation in azimuthal angle, gamma rms, due to such motions. It is found that gamma rms equals 41 degrees, 33 degrees, and 14 degrees for the uncross-linked, cross-linked, and mineralized collagens, respectively. These results provide the first information about the extent that cross-linking and mineralization restrict molecular motion in collagen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.