Abstract

We have determined the amplitude of nanosecond fluctuations of the collagen azimuthal orientation in intact tissues and reconstituted fibers from an analysis of 13C NMR relaxation data. We have labeled intact rat calvaria and tibia collagen (mineralized and cross-linked), intact rat tail tendon and demineralized bone collagen (cross-linked), and reconstituted lathyritic (non-cross-linked) chick calvaria collagen with [2-13C]glycine. This label was chosen because one-third of the amino acid residues in collagen are glycine and because the 1H-13C dipolar coupling is the dominant relaxation mechanism. Spin-lattice relaxation times (T1) and nuclear Overhauser enhancements were measured at 15.09 and 62.98 MHz at 22 and -35 degrees C. The measured NMR parameters have been analyzed by using a dynamic model in which the azimuthal orientation of the molecule fluctuates as a consequence of reorientation about the axis of the triple helix. We have shown that if root mean square fluctuations in the azimuthal orientations are small, gamma rms much less than 1 rad, the correlation function decays with a single correlation time tau and T1 depends only upon tau and gamma rms and not the detailed model of motion. Our analysis shows that, at 22 degrees C, tau is in the 1-5-ns range for all samples and gamma rms is 10 degrees, 9 degrees, and 5.5 degrees for the non-cross-linked, cross-linked, and mineralized samples, respectively. At -35 degrees C, gamma rms is less than 3 degrees for all samples. These results show that mineral and low temperature significantly restrict the amplitude of nanosecond motions of the collagen backbone.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.