Abstract

The need for a low bandgap semiconductor on a GaAs substrate for thermophotovoltaic applications has motivated research on GaSb alloys, in particular, the control of plastic relaxation of its active layer. Although interfacial misfit arrays offer a possibility of growing strain-free GaSb-based devices on GaAs substrates, a high density of threading dislocations is normally observed. Here, we present the effects of the combined influence of Be dopants and low growth temperature on the threading dislocation density observed by Transmission Electron Microscopy. The Be-related hardening mechanism, occurring at island coalescence, is shown to prevent dislocations to glide and hence reduce the threading dislocation density in these structures. The threading density in the doped GaSb layers reaches the values of seven times less than those observed in undoped samples, which confirms the proposed Be-related hardening mechanism.

Highlights

  • The need for a low bandgap semiconductor on a GaAs substrate for thermophotovoltaic applications has motivated research on GaSb alloys, in particular, the control of plastic relaxation of its active layer

  • Solid solution strengthening in GaSb/GaAs: A mode to reduce the threading dislocations (TDs) density through Be-doping

Read more

Summary

Introduction

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.