Abstract

The solid-phase synthesis of manganese silicides on the Si(100)2 × 1 surface coated at room temperature by a 2-nm-thick manganese film has been investigated using high-energy-resolution photoelectron spectroscopy with synchrotron radiation. The dynamics of variation of the phase composition and electronic structure of the near-surface region with increasing sample annealing temperature to 600°C, has been revealed. It has been shown that, under these conditions, a solid solution of silicon in manganese, metallic manganese monosilicide MnSi, and semiconductor silicide MnSi1.7 are successively formed on the silicon surface. The films of both silicides are not continuous, with the fraction of the substrate surface occupied by them decreasing with increasing annealing temperature. The binding energies of the Si 2p and Mn 3p electrons in the compounds synthesized have been determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call