Abstract
In 1962, R.B. Merrifield published the first procedure using solid-phase peptide synthesis as a novel route to efficiently synthesize peptides. This technique quickly proved advantageous over its solution-phase predecessor in both time and labor. Improvements concerning the nature of solid support, the protecting groups employed and the coupling methods employed over the last five decades have only increased the usefulness of Merrifield's original system. Today, use of a Boc-based protection and base/nucleophile cleavable resin strategy or Fmoc-based protection and acidic cleavable resin strategy, pioneered by R.C. Sheppard, are most commonly used for the synthesis of peptides1. Inspired by Merrifield's solid supported strategy, we have developed a Boc/tert-butyl solid-phase synthesis strategy for the assembly of functionalized bis-peptides2, which is described herein. The use of solid-phase synthesis compared to solution-phase methodology is not only advantageous in both time and labor as described by Merrifield1, but also allows greater ease in the synthesis of bis-peptide libraries. The synthesis that we demonstrate here incorporates a final cleavage stage that uses a two-step "safety catch" mechanism to release the functionalized bis-peptide from the resin by diketopiperazine formation. Bis-peptides are rigid, spiro-ladder oligomers of bis-amino acids that are able to position functionality in a predictable and designable way, controlled by the type and stereochemistry of the monomeric units and the connectivity between each monomer. Each bis-amino acid is a stereochemically pure, cyclic scaffold that contains two amino acids (a carboxylic acid with an α-amine)3,4. Our laboratory is currently investigating the potential of functional bis-peptides across a wide variety of fields including catalysis, protein-protein interactions and nanomaterials.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have