Abstract

A new analytical method is described for the determination of the physiological concentration and low-level enrichment of (13)C-short-chain volatile organic acids (SCVAs) (e.g. (13)C-acetate and (13)C-butyrate) in human plasma. This two-step method involves solid-phase microextraction (SPME) coupled to gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) without any organic solvents or derivatizing agents. Two SCVA extraction methods were compared using a carboxen/polydimethylsiloxane fiber: headspace sampling (HS) and liquid sampling (LS) SPME. The influences of extraction temperature and time were tested to optimize the adsorption of SCVAs onto the fiber. The comparison of the peak area responses of the acids in the two adsorption methods showed better sensitivity in the human physiological concentration range in the LS mode than in the HS mode. The accuracy of isotopic enrichment measurement was determined using plasma spiked with (13)C-acetate and (13)C-butyrate solution from 0 to 1 mol percent excess (MPE). The linearity and repeatability (RSD < 5%) were measured in LS mode. Plasma SCVA concentrations were also determined relative to 3-methylvalerate (internal standard). Linearity and repeatability were observed from 0 to 400 microM for acetate, from 0 to 20 microM for propionate, and from 0 to 10 microM for butyrate. This method was also used to determine plasma acetate production obtained from lactulose (an undigestible disaccharide) fermentation in one healthy volunteer over 3 h. The acetate concentration increased twofold, 2 h after oral lactulose intake. These results are in agreement with the data obtained by GC/MS in healthy volunteers and obese adults following a lactulose intake by using higher amounts of labelled tracers.SPME coupled with GC/C/IRMS can be used to analyze (13)C-SCVAs at low enrichment (<0.5 MPE) within the physiological concentration measured in human plasma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.