Abstract
The paper involves the subject and the chosen results of up to now solving of work package “Development of advanced surface treatment of components used in parts of turbines working under the condition of operational temperatures of steam using the HP/HVOF technology of thermal spraying” of the Competence Centre project “Centre of Research and Experimental Development of Reliable Energy Production”. The subject belongs to the field of material engineering and results of solving contribute to fulfilling the main project aim, which is a long time safeguarding of safe, reliable and financially available both classical thermal and nuclear sources of electric power, which consists in extending service life of existing and building new turbo generator blocks. The erosion wear resistance is one of the areas, which were observed. The impact of hard particles on the surface under variable impact angles was simulated in laboratory conditions using an in-house equipment. The wear resistance of selected HVOF sprayed hardmetal and super-alloy coatings was measured and the wear mechanism was evaluated. A strong influence of impact angle on both material volume loss and wear mechanism was monitored. The superior erosion wear properties of super-alloy coatings were proved, regardless the higher hardness of hardmetal coatings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.