Abstract

Defect states dominate the performance of low-dimensional nanoelectronics, which deteriorate the serviceability of devices in most cases. But in recent years, some intriguing functionalities are discovered by defect engineering. In this work, we demonstrate a bifunctional memory device of a MoS2/BiFeO3/SrTiO3 van der Waals heterostructure, which can be programmed and erased by solely one kind of external stimuli (light or electrical-gate pulse) via engineering of oxygen-vacancy-based solid-ionic gating. The device shows multibit electrical memory capability (>22 bits) with a large linearly tunable dynamic range of 7.1 × 106 (137 dB). Furthermore, the device can be programmed by green- and red-light illuminations and then erased by UV light pulses. Besides, the photoresponse under red-light illumination reaches a high photoresponsivity (6.7 × 104 A/W) and photodetectivity (2.12 × 1013 Jones). These results highlighted solid-ionic memory for building up multifunctional electronic and optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call